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A TOPOLOGICAL CHARACTERIZATION OF Ω-LIMIT
SETS ON DYNAMICAL SYSTEMS

Hahng-Yun Chu*, Ahyoung Kim**, and Jong-Suh Park***

Abstract. In this article, we deal with the notion of Ω-limit sets
in dynamical systems. We show that the Ω-limit set of a compact
subset of a phase space is quasi-attracting.

1. Introduction

The theory for the notion of attractors is important for the classi-
cal theory of dynamical systems. Conley [7] introduced a topological
definition of attractors for a flow on a compact metric space. Hurley
[9, 10] obtained results which is related to the correspondence between
attractors and Lyapunov functions on noncompact spaces. Akin [1] and
McGehee [12] obtained many properties of attractors in set-valued dy-
namics.

The concept of omega-limit set, arising from their ubiquitous applica-
tions in dynamical systems, is also an extremely used tool in the abstract
theory of dynamical systems. Especially, the notion of omega-limit sets
is much related to the notion of attractors. These notions are used to
describe eventually the positive time behavior for dynamical systems.
In recent years, Choy and Chu [4] described the characterizations of
omega-limit sets for analytic flows on R2.
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A pseudo-orbit(chain) was firstly used by Bowen [3] and Conley [7].
The notion is a very strong tool to understand important theories in
several fields of Mathematics and generates many results about the in-
duced concepts, for example, chain transitive, chain recurrence, shad-
owing property and so on. See [2, 9, 10, 11, 13, 14].

In [8], Ding introduced the concept of chain prolongation and inves-
tigated the notion of chain stability which takes an intermediate con-
cept between absolute stability and asymptotic stability. Especially he
proved that the chain prolongation set of closed set is quasi-attracting.
Recently, Chu et al [5] discussed the notion of chain prolongations in
locally compact spaces.

In this paper, we focus on the relationship between the notion of Ω-
limit sets and the notion of quasi-attracting sets. The quasi-attracting
sets are considered as a general version of the notion of attracting sets.
More precisely speaking, we show that the Ω-limit set of a compact set
is quasi-attracting.

The paper is organized as follows.
In section 2, we explain the elementary definitions for the proof of

the main theorems.
In section 3, we briefly sketch for the theories of attracting sets and

quasi-attracting sets. Next, we also prove that the Ω-limit set of a
compact subset of X becomes an quasi-attracting set.

2. Ω-limit set in topological dynamics

Let (X, d) be a locally compact metric space. A flow on X is the
continuous map π : X × R→ X that satisfies the following group laws;
for every x ∈ X, π(x, 0) = x and for every t, s ∈ R, x ∈ X, π(π(x, t), s) =
π(x, t + s). For a convenience, we briefly write x · t = π(x, t). For any
x ∈ X, we define an orbit of x to be the subset {x · t | t ∈ R} of X which
is denoted by O(x). We say that a subset Y of X is positively invariant
(invariant) under π if Y · R+ = Y (Y · R = Y ).

Next, we introduce the subsets of X which are related to the eventual
orbit of a point under the flow π. For x ∈ X, the limit set of x, denoted
by Λ+(x), is defined by

Λ+(x) :=
⋂

t≥0

x · [t,∞).
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The limit set of x has a major role in Conley’s theory, and for its basic
properties we refer to [7, 8]. For x ∈ X, we also call the first prolonga-
tional limit set and first prolongational set of x as defined, respectively,
by

J+(x) :=
⋂

U∈N(x),t≥0

U · [t,∞),

D+(x) :=
⋂

U∈N(x)

U · R+,

where N(x) is the set of all neighborhoods of x.
In [2], Bae, Choi and Park studied limit sets and prolongational sets

in topological dynamics. Next remark is immediately proved from the
definitions. See [6].

Remark 2.1. ([6]) For x ∈ X, the following equivalences are well-
known.

(1) y ∈ Λ+(x) if and only if there is a sequence {tn} in R+ with
tn →∞ such that x · tn → y.

(2) y ∈ J+(x) if and only if there are a sequence {xn} in X and a
sequence {tn} in R+ such that xn → x, tn →∞ and xn · tn → y.

(3) y ∈ D+(x) if and only if there are a sequence {xn} in X and a
sequence {tn} in R+ such that xn → x and xntn → y.

Let Γ : X → 2X be a function and A ⊆ X, then we canonically de-
fine Γ(A) := ∪x∈AΓ(x). We define the composition Γ2 = Γ ◦ Γ given by
Γ2(x) = Γ(Γ(x)) = ∪y∈Γ(x)Γ(y). According to the above inductive defi-
nition for the set-valued function Γ, we can consider naturally the itera-
tion Γn : X → 2X inductively by Γ1(x) = Γ(x) and Γn(x) = Γ(Γn−1(x)).
To unfold the applications for the properties of the set-valued function
Γ, we need to express the trajectory for the function by the union of the
iteration Γn. For a family of functions Γi : X → 2X(i ∈ I), we give the
new map ∪i∈IΓi : X → 2X defined by (∪i∈IΓi)(x) = ∪i∈IΓi(x).

Let P be the set of all functions from X to its power set 2X and let
Γ ∈ P. We define the mappings D and S from the set P to itself given
by

(DΓ)(x) = ∩U∈N(x)Γ(U) and (SΓ)(x) = ∪∞n=1Γ
n(x),

for every x ∈ X. We call D a closure funtion for Γ and S an orbital
function for Γ defined on P.

Remark 2.2. ([5]) Let Γ : X → 2X be a mapping and x ∈ X. Then
DΓ(x) is the set of all points y ∈ X with the property that there exist
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sequences (xn) and (yn) in X with yn ∈ Γ(xn) such that xn → x, yn → y.
Furthermore, SΓ(x) is the set of all points y ∈ X such that there is a
finite subset {x1, · · · , xk} of X with the properties that x1 = x, xk = y
and xi+1 ∈ Γ(xi), i = 1, · · · , k − 1.

Remark 2.3. ([6]) The new mappings D and S have interesting prop-
erties, especially the iterations of the mappings are just the original
mappings. More precisely speaking, a closure function D is idempotent
and so is an orbital function S, that is, D2(x) = D(x) and S2(x) = S(x)
for every x ∈ X.

We recall the notions of chains and Ω-limit sets in [7] for details. Let
x, y be elements of X and ε, t positive real numbers. An (ε, t)-chain from
x to y means a pair of finite sequences x = x1, x2, · · · , xn, xn+1 = y in
X and t1, t2, · · · , tn in R+ such that ti ≥ t and d(xi · ti, xi+1) ≤ ε for all
i = 1, 2, · · · , n. Define a relation R in X ×X as follows. By (x, y) ∈ R,
we mean that for every ε > 0 and t > 0, there exists (ε, t)-chain from x
to y.

We define the set-valued map Ω : X → 2X given by x to Ω(x), where
Ω(x) := {y ∈ X : (x, y) ∈ R}. Ω(x) is called the Ω-limit set of x.

In [7], Conley investigated the several notions of topological dynamics
in a compact metric space. He proved that the chain relation R is closed
and transitive on X and also showed that if (x, y) ∈ R and (s1, s2) ∈
R+ × R+, then (x · s1, y · s2) ∈ R. We observe that Ω(x) is a closed
invariant subset of a compact metric space X and J+(x) ⊆ Ω(x) (see [7,
p.36] and [8, p.2721]). Note that Ω(M) = ∪x∈MΩ(x) for every subset
M of X.

3. Attracting sets and quasi-attracting sets

In this section, we investigate the notions of Ω-limit sets, attracting
sets and quasi-attracting sets in a locally compact space X.

For a subset Y of X, we define the limit set of Y by

ω(Y ) =
⋂

t≥0

Y · [t,∞).

Note that ω(Y ) is a maximal invariant subset in Y ·[0,∞) and is generally
larger than Λ+(Y ) =

⋃
x∈Y Λ+(x).

In [6], it is proved that the connectedness is invariant under the notion
of limit. More precisely speaking, assume that the limit set ω(Y ) of a
connected subset Y of X is compact, then the limit set is connected.
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A positively invariant closed subset A of X is called an attracting set
if A admits a neighborhood U such that ω(U) ⊆ A. A closed set is a
quasi-attracting set if it is an intersection of attracting sets.

It is easy to see that if A is a (quasi-)attracting set, so is A · t, for
t ∈ R. Let {Bi}i∈I (here, I is some index set) be the family of quasi-
attracting sets, then

⋂
i∈I Bi is also a quasi-attracting set. We note that

a quasi-attracting set is just positively invariant. In general, actually
(quasi-)attracting set need not invariant. If an (quasi-)attracting set is
invariant, the set is called an (quasi-)attractor in the sense of Conley(see
[7]); that is, an invariant attracting set A is an attractor.

For positive real numbers ε and t, we define the set Pt(M, ε) by

Pt(M, ε) := {y ∈ X | there is an (ε, t)−chain from x to y for some x ∈ M}.
In the following lemma, we show that the Ω-limit set Ω(M) of com-

pact set M is represented by the intersection of the above subsets. This
representation plays an important role in the proof of Theorem 3.4.

Lemma 3.1. Let M be a compact subset of X. Then

Ω(M) =
⋂

ε,t>0

Pt(M, ε).

Proof. Firstly we recall the equality Ω(M) = ∪x∈MΩ(x). From the
equality, we can easily prove the inclusion Ω(M) ⊆ ⋂

ε,t>0 Pt(M, ε).
Conversely, we let y ∈ ⋂

ε,t>0 Pt(M, ε). Then, for each positive inte-
ger n, since y is an element of Pn(M, 1

n), there exist an element xn of
M and a ( 1

n , n)-chain from xn to y

{xn = xn
1 , xn

2 , · · · , xn
mn

, xn
mn+1 = y; tn1 , tn2 , · · · , tnmn

}.
Since M is compact, the sequence {xn} in M has a convergent sub-
sequence. Without loss of generality, we can assume that the original
sequence {xn} converges to some point x in M . For any ε > 0 and
t > 0, there exists a positive real number δ such that if d(x, z) < δ, then
d(x · t, z · t) < ε. We can take a positive integer n such that

d(x, xn) < δ, n > 2t and
1
n

< ε.

Since d(x, xn) < δ, we have d(x·t, xn ·t) < ε. Thus the following sequence

{x, xn · t, xn
2 , · · · , xn

mn
, xn

mn+1 = y; t, tn1 − t, tn2 , · · · , tnmn
}

is (ε, t)-chain from x to y. Hence y is an element of Ω(M), which com-
pletes the proof.
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In [8, p.2724], Ding showed that the set Pt(M, ε) is open and proved
the inclusion Pt(M, ε) · [t,∞) ⊆ Pt(M, ε). Put Aε,t := Pt(M, ε) · [t,∞).
Then he obtins that the set Pt(M, ε) is an open neighborhood of Aε,t

and that furthermore, Aε,t is a positively invariant closed attracting set.

Lemma 3.2. Let Pt(M, ε) and Aε,t be the same as notations in the
above statements. Then we have⋂

ε,t>0

Pt(M, ε) =
⋂

ε,t>0

Aε,t.

Proof. From Ding’s results in the above, it is obvious that the set⋂
ε,t>0 Aε,t is contained in the intersection

⋂
ε,t>0 Pt(M, ε).

To show the converse, firstly, let y be an element of
⋂

ε,t>0 Pt(M, ε).
For an arbitrary positive real numbers ε and t, we can choose a positive
real number t

′
larger than 2t. We note that the action y · (−s)(s > 0)

is continuous. Let δ be an arbitrary positive real number. Using the
continuity of the action, we can choose a positive real number δ

′
such

that if d(y, y
′
) < δ

′
then

d(y · (−t), y
′ · (−t)) < δ.(1)

Put ε
′
:= min(δ

′
, ε). Since y is an element of Pt′ (M, ε

′
), there exists

(ε
′
, t
′
)-chain from x0 to y, say {x0, x1, · · · , xm, xm+1 = y; t0, t1, · · · , tm},

for some x0 in M . Since t
′
is larger than 2t, we can construct the new

(ε, t)-chain from x0 to xm · (tm − t) as follows,

{x0, x1, · · · , xm, xm · (tm − t); t0, t1, · · · , tm − t}.
Thus we have that xm · (tm− t) is an element of Pt(M, ε). Note that the
inequalities d(y, xm · tm) < ε

′ ≤ δ
′
. By (1), we obtain that d(y ·(−t), xm ·

(tm − t)) < δ. Since δ is arbitrary, it yields that y · (−t) ∈ Pt(M, ε).
Then we obtain the following inclusions

y = (y · (−t)) · t ∈ Pt(M, ε) · t
⊆ Pt(M, ε) · t
⊆ Pt(M, ε) · [t,∞),

for arbitrary positive real numbers ε, t. Therefore y is an element of⋂
ε,t>0 Aε,t.

To prove the theorem 3.4, we also need a basic property for Ω-limit
sets as follows.

Lemma 3.3. ([5]) If pn → p, qn → q and qn ∈ Ω(pn), then q ∈ Ω(p).
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We now complete the consequence for the notion of quasi-attracting
sets. The following theorem describes that the Ω-limit set on X is quasi-
attracting for the compact case.

Theorem 3.4. For a compact subset M of X, Ω(M) is quasi-attracting.

Proof. First of all, we show that Ω(M) is a closed subset. Let y be
an element of Ω(M). Then there exists a sequence {yn} in Ω(M) such
that {yn} converges to y. Thus, for every n, there exists a point xn

in M such that yn ∈ Ω(xn). By the compactness of M , the sequence
{xn} has a convergent subsequence. Without loss of generality, we can
assume that the original sequence {xn} converges to some point x in M .
By Lemma 3.3, y is an element of Ω(x) and thus, Ω(M) is closed.

By combining Lemma 3.1 and 3.2, we get the following equalities

Ω(M) =
⋂

ε,t>0

Pt(M, ε) =
⋂

ε,t>0

Aε,t.

As a consequence, the Ω-limit set is the above the intersection of the
attracting sets, that is, quasi-attracting set. This completes the proof.
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